Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.730
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(7): 651-656, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35786458

RESUMO

Objective To prepare rabbit polyclonal antibody specifically against human glutamine fructose-6-phosphate amidotransferase 1(GFPT1). Methods The protein sequences of GFPT1 and its highly homologous isozyme GFPT2 were compared. Two peptides for the specific sequence of GFPT1 were designed and synthesized. New Zealand rabbits were immunized by peptide coupled with Keyhole Limpet hemocyanin (KLH) as antigen. Antiserum was obtained after 3 booster immunizations. The titer of the antiserum against GFPT1 were detected by ELISA. The E.coli expression vectors of GFPT1 and GFPT2 were constructed, and the recombinant proteins of GFPT1 and GFPT2 were obtained by induced expression. GFPT1 and GFPT2 recombinant proteins were analyzed by Western blot to verify the specificity of the antiserum. Immuno-fluorescence cytochemical staining for GFPT1 expression in 786-O cells was verified as for whether the obtained antiserum could recognize the endogenously expressed GFPT1. Results Polyclonal antibody specifically recognizing GFPT1 was obtained and the titer of polyclonal antibody reached 1:1 458 000. Conclusion The experiment successfully prepared the specific rabbit polyclonal antibody against GFPT1.


Assuntos
Anticorpos , Glutamina , Animais , Escherichia coli/genética , Frutosefosfatos , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , Humanos , Soros Imunes , Coelhos , Proteínas Recombinantes
2.
Mol Cell Proteomics ; 21(2): 100185, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923141

RESUMO

Breast cancer cells that have undergone partial epithelial-mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-ß. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Frutosefosfatos , Glutamina/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Estresse Oxidativo , Transaminases/metabolismo
3.
Biochem Biophys Res Commun ; 579: 129-135, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34597996

RESUMO

Phosphofructokinase B (PfkB) belongs to the ribokinase family, which uses the phosphorylated sugar as substrate, and catalyzes fructose-6-phosphate into fructose-1,6-diphosphate. However, the structural basis of Mycobacterium marinum PfkB is not clear. Here, we found that the PfkB protein was monomeric in solution, which was different from most enzymes in this family. The crystal structure of PfkB protein from M. marinum was solved at a resolution of 2.21 Å. The PfkB structure consists of two domains, a major three-layered α/ß/α sandwich-like domain characteristic of the ribokinase-like superfamily, and a second domain composed of four-stranded ß sheets. Structural comparison analysis suggested that residues G236, A237, G238, and D239 could be critical for ATP catalysis and substrate binding of PfkB. Our current work provides new insights into understanding the mechanism of the glycolysis in M. marinum.


Assuntos
Mycobacterium marinum/enzimologia , Fosfofrutoquinase-2/metabolismo , Catálise , Cromatografia em Gel , Cristalografia por Raios X , Escherichia coli , Frutosefosfatos/química , Glicólise , Concentração de Íons de Hidrogênio , Conformação Molecular , Simulação de Acoplamento Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Espalhamento de Radiação , Temperatura
4.
Open Biol ; 11(8): 210098, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34375548

RESUMO

Glycolysis and gluconeogenesis are central pathways of metabolism across all domains of life. A prominent enzyme in these pathways is phosphoglucose isomerase (PGI), which mediates the interconversion of glucose-6-phosphate and fructose-6-phosphate. The predatory bacterium Bdellovibrio bacteriovorus leads a complex life cycle, switching between intraperiplasmic replicative and extracellular 'hunter' attack-phase stages. Passage through this complex life cycle involves different metabolic states. Here we present the unliganded and substrate-bound structures of the B. bacteriovorus PGI, solved to 1.74 Å and 1.67 Å, respectively. These structures reveal that an induced-fit conformational change within the active site is not a prerequisite for the binding of substrates in some PGIs. Crucially, we suggest a phenylalanine residue, conserved across most PGI enzymes but substituted for glycine in B. bacteriovorus and other select organisms, is central to the induced-fit mode of substrate recognition for PGIs. This enzyme also represents the smallest conventional PGI characterized to date and probably represents the minimal requirements for a functional PGI.


Assuntos
Bdellovibrio bacteriovorus/enzimologia , Frutosefosfatos/metabolismo , Glucose-6-Fosfato Isomerase/química , Glucose-6-Fosfato Isomerase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
5.
Enzyme Microb Technol ; 147: 109784, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33992412

RESUMO

Asymmetric CC bond formation catalyzed by aldolases requires the supplementation of nucleophiles and receptors in the reaction medium. However, aldol condensation using a single ketone as substrate has never been reported yet. In this work, we discovered that d-fructose-6-phosphate aldolase (FSA) could convert two 1-hydroxyalkanones, such as hydroxyacetone (HA) and 1-hydroxy-2-butanone, into two type of diketones. The initial product synthesis rate increased 3-fold and the yield reached to 56 %, when pure oxygen was directly inputted into the reaction medium. The results confirmed that oxygen participated in this reaction and hydrogen peroxide was generated. Metal ions Co2+ and Cu2+ remarkably increased the conversion yield compared with the control. For this reaction mechanism, we conjectured that HA may be oxidized to methylglyoxal by enzyme FSA in the presence of oxygen in the medium, and then FSA catalyzes the aldol addition between HA and its oxidative product MG to form diketone products. The obtained diketones could serve as important precursors for preparing furans and pyrroles.


Assuntos
Escherichia coli , Frutose-Bifosfato Aldolase , Aldeído Liases/metabolismo , Catálise , Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutosefosfatos , Cetonas , Especificidade por Substrato
6.
J Biol Chem ; 296: 100219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839685

RESUMO

ADP-dependent kinases were first described in archaea, although their presence has also been reported in bacteria and eukaryotes (human and mouse). This enzyme family comprises three substrate specificities; specific phosphofructokinases (ADP-PFKs), specific glucokinases (ADP-GKs), and bifunctional enzymes (ADP-PFK/GK). Although many structures are available for members of this family, none exhibits fructose-6-phosphate (F6P) at the active site. Using an ancestral enzyme, we obtain the first structure of an ADP-dependent kinase (AncMsPFK) with F6P at its active site. Key residues for sugar binding and catalysis were identified by alanine scanning, D36 being a critical residue for F6P binding and catalysis. However, this residue hinders glucose binding because its mutation to alanine converts the AncMsPFK enzyme into a specific ADP-GK. Residue K179 is critical for F6P binding, while residues N181 and R212 are also important for this sugar binding, but to a lesser extent. This structure also provides evidence for the requirement of both substrates (sugar and nucleotide) to accomplish the conformational change leading to a closed conformation. This suggests that AncMsPFK mainly populates two states (open and closed) during the catalytic cycle, as reported for specific ADP-PFK. This situation differs from that described for specific ADP-GK enzymes, where each substrate independently causes a sequential domain closure, resulting in three conformational states (open, semiclosed, and closed).


Assuntos
Proteínas Arqueais/química , Frutosefosfatos/química , Glucoquinase/química , Methanosarcinales/química , Fosfofrutoquinases/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Biocatálise , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Frutosefosfatos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucoquinase/genética , Glucoquinase/metabolismo , Cinética , Ligantes , Methanosarcinales/enzimologia , Methanosarcinales/genética , Modelos Moleculares , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
PLoS One ; 16(4): e0250513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886681

RESUMO

Fructose-6-phosphate aldolase (FSA) is an important enzyme for the C-C bond-forming reactions in organic synthesis. The present work is focused on the synthesis of a precursor of D-fagomine catalyzed by a mutant FSA. The biocatalyst has been immobilized onto several supports: magnetic nanoparticle clusters (mNC), cobalt-chelated agarose (Co-IDA), amino-functionalized agarose (MANA-agarose) and glyoxal-agarose, obtaining a 29.0%, 93.8%, 89.7% and 53.9% of retained activity, respectively. Glyoxal-agarose FSA derivative stood up as the best option for the synthesis of the precursor of D-fagomine due to the high reaction rate, conversion, yield and operational stability achieved. FSA immobilized in glyoxal-agarose could be reused up to 6 reaction cycles reaching a 4-fold improvement in biocatalyst yield compared to the non-immobilized enzyme.


Assuntos
Aldeído Liases/química , Enzimas Imobilizadas/química , Imino Piranoses/química , Nanopartículas de Magnetita/química , Aldeído Liases/metabolismo , Catálise , Cobalto/química , Enzimas Imobilizadas/metabolismo , Escherichia coli/enzimologia , Frutosefosfatos/metabolismo , Imino Piranoses/síntese química , Sefarose/química
8.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540748

RESUMO

Tuberculosis (TB) remains one of the major health concerns worldwide. Mycobacterium tuberculosis (Mtb), the causative agent of TB, can flexibly change its metabolic processes during different life stages. Regulation of key metabolic enzyme activities by intracellular conditions, allosteric inhibition or feedback control can effectively contribute to Mtb survival under different conditions. Phosphofructokinase (Pfk) is one of the key enzymes regulating glycolysis. Mtb encodes two Pfk isoenzymes, Pfk A/Rv3010c and Pfk B/Rv2029c, which are differently expressed upon transition to the hypoxia-induced non-replicating state of the bacteria. While pfkB gene and protein expression are upregulated under hypoxic conditions, Pfk A levels decrease. Here, we present biochemical characterization of both Pfk isoenzymes, revealing that Pfk A and Pfk B display different kinetic properties. Although the glycolytic activity of Pfk A is higher than that of Pfk B, it is markedly inhibited by an excess of both substrates (fructose-6-phosphate and ATP), reaction products (fructose-1,6-bisphosphate and ADP) and common metabolic allosteric regulators. In contrast, synthesis of fructose-1,6-bisphosphatase catalyzed by Pfk B is not regulated by higher levels of substrates, and metabolites. Importantly, we found that only Pfk B can catalyze the reverse gluconeogenic reaction. Pfk B thus can support glycolysis under conditions inhibiting Pfk A function.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Fosfofrutoquinases/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Regulação Alostérica , Proteínas de Bactérias/antagonistas & inibidores , Catálise , Indução Enzimática , Retroalimentação Fisiológica , Frutosedifosfatos/biossíntese , Frutosedifosfatos/farmacologia , Frutosefosfatos/metabolismo , Frutosefosfatos/farmacologia , Gluconeogênese , Glicólise , Hexosefosfatos/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Cinética , L-Lactato Desidrogenase/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Oxigênio/farmacologia , Fosfofrutoquinases/antagonistas & inibidores , Piruvato Quinase/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
9.
Acta Biochim Pol ; 68(1): 5-14, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33502838

RESUMO

Muscle fructose-1,6-bisphosphatase (FBPase), which catalyzes the hydrolysis of fructose-1,6-bisphosphate (F1,6BP) to fructose-6-phosphate (F6P) and inorganic phosphate, regulates glucose homeostasis by controlling the glyconeogenic pathway. FBPase requires divalent cations, such as Mg2+, Mn2+, or Zn2+, for its catalytic activity; however, calcium ions inhibit the muscle isoform of FBPase by interrupting the movement of the catalytic loop. It has been shown that residue E69 in this loop plays a key role in the sensitivity of muscle FBPase towards calcium ions. The study presented here is based on five crystal structures of wild-type human muscle FBPase and its E69Q mutant in complexes with the substrate and product of the enzymatic reaction, namely F1,6BP and F6P. The ligands are bound in the active site of the studied proteins in the same manner and have excellent definition in the electron density maps. In all studied crystals, the homotetrameric enzyme assumes the same cruciform quaternary structure, with the κ angle, which describes the orientation of the upper dimer with respect to the lower dimer, of -85o. This unusual quaternary arrangement of the subunits, characteristic of the R-state of muscle FBPase, is also observed in solution by small-angle X-ray scattering (SAXS).


Assuntos
Frutose-Bifosfatase/química , Frutose-Bifosfatase/metabolismo , Músculos/enzimologia , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Biocatálise , Domínio Catalítico , Cristalização , Frutosefosfatos/química , Frutosefosfatos/metabolismo , Humanos , Ligação de Hidrogênio , Hidrólise , Ligantes , Modelos Moleculares , Peso Molecular , Músculos/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
10.
Nucleic Acids Res ; 49(3): 1397-1410, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33476373

RESUMO

In most bacteria, efficient use of carbohydrates is primarily mediated by the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), which concomitantly phosphorylates the substrates during import. Therefore, transcription of the PTS-encoding genes is precisely regulated by transcriptional regulators, depending on the availability of the substrate. Fructose is transported mainly through the fructose-specific PTS (PTSFru) and simultaneously converted into fructose 1-phosphate (F1P). In Gammaproteobacteria such as Escherichia coli and Pseudomonas putida, transcription of the fru operon encoding two PTSFru components, FruA and FruB, and the 1-phosphofructokinase FruK is repressed by FruR in the absence of the inducer F1P. Here, we show that, contrary to the case in other Gammaproteobacteria, FruR acts as a transcriptional activator of the fru operon and is indispensable for the growth of Vibrio cholerae on fructose. Several lines of evidence suggest that binding of the FruR-F1P complex to an operator which is located between the -35 and -10 promoter elements changes the DNA structure to facilitate RNA polymerase binding to the promoter. We discuss the mechanism by which the highly conserved FruR regulates the expression of its target operon encoding the highly conserved PTSFru and FruK in a completely opposite direction among closely related families of bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Frutosefosfatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Ativação Transcricional , Vibrio cholerae/genética , Sítios de Ligação , DNA Bacteriano/metabolismo , Frutose/metabolismo , Regiões Operadoras Genéticas , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , Vibrio cholerae/metabolismo
11.
Anal Biochem ; 613: 114022, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33217405

RESUMO

In a recent paper, we showed the difference between the first stage of the one-substrate and the two-substrate transketolase reactions - the possibility of transfer of glycolaldehyde formed as a result of cleavage of the donor substrate from the thiazole ring of thiamine diphosphate to its aminopyrimidine ring through the tricycle formation stage, which is necessary for binding and splitting the second molecule of donor substrate [O.N. Solovjeva et al., The mechanism of a one-substrate transketolase reaction, Biosci. Rep. 40 (8) (2020) BSR20180246]. Here we show that under the action of the reducing agent a tricycle accumulates in a significant amount. Therefore, a significant decrease in the reaction rate of the one-substrate transketolase reaction compared to the two-substrate reaction is due to the stage of transferring the first glycolaldehyde molecule from the thiazole ring to the aminopyrimidine ring of thiamine diphosphate. Fragmentation of the four-carbon thiamine diphosphate derivatives showed that two glycolaldehyde molecules are bound to both coenzyme rings and the erythrulose molecule is bound to a thiazole ring. It was concluded that in the one-substrate reaction erythrulose is formed on the thiazole ring of thiamine diphosphate from two glycol aldehyde molecules linked to both thiamine diphosphate rings. The kinetic characteristics were determined for the two substrates, fructose 6-phosphate and glycolaldehyde.


Assuntos
Transcetolase/química , Transcetolase/metabolismo , Acetaldeído/análogos & derivados , Acetaldeído/química , Acetaldeído/metabolismo , Biocatálise , Boroidretos/química , Coenzimas/metabolismo , Frutosefosfatos/química , Frutosefosfatos/metabolismo , Cinética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Tetroses/metabolismo , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo
12.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348713

RESUMO

Phosphofructokinase (PFK) plays a pivotal role in glycolysis. By deletion of the genes pfkA, pfkB (encoding the two PFK isoenzymes), and zwf (glucose 6-phosphate dehydrogenase) in Escherichia coli K-12, a mutant strain (GL3) with a complete block in glucose catabolism was created. Introduction of plasmid-borne copies of the fsaA wild type gene (encoding E. coli fructose 6-phosphate aldolase, FSAA) did not allow a bypass by splitting fructose 6-phosphate (F6P) into dihydroxyacetone (DHA) and glyceraldehyde 3-phosphate (G3P). Although FSAA enzyme activity was detected, growth on glucose was not reestablished. A mutant allele encoding for FSAA with an amino acid exchange (Ala129Ser) which showed increased catalytic efficiency for F6P, allowed growth on glucose with a µ of about 0.12 h-1. A GL3 derivative with a chromosomally integrated copy of fsaAA129S (GL4) grew with 0.05 h-1 on glucose. A mutant strain from GL4 where dhaKLM genes were deleted (GL5) excreted DHA. By deletion of the gene glpK (glycerol kinase) and overexpression of gldA (of glycerol dehydrogenase), a strain (GL7) was created which showed glycerol formation (21.8 mM; yield approximately 70% of the theoretically maximal value) as main end product when grown on glucose. A new-to-nature pathway from glucose to glycerol was created.


Assuntos
Aldeído Liases/genética , Vias Biossintéticas/genética , Di-Hidroxiacetona/biossíntese , Escherichia coli K12/enzimologia , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Expressão Gênica , Genes Bacterianos , Glicerol/metabolismo , Alelos , Frutosefosfatos/metabolismo , Deleção de Genes , Glucose/metabolismo , Glucosefosfato Desidrogenase/genética , Glicerol Quinase/genética , Isoenzimas/genética , Via de Pentose Fosfato/genética , Fosfofrutoquinases/química , Fosfofrutoquinases/genética , Desidrogenase do Álcool de Açúcar/genética
13.
Biochem J ; 477(22): 4425-4441, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33141153

RESUMO

6-Phosphofructokinase-1-kinase (PFK) tetramers catalyse the phosphorylation of fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate (F16BP). Vertebrates have three PFK isoforms (PFK-M, PFK-L, and PFK-P). This study is the first to compare the kinetics, structures, and transcript levels of recombinant human PFK isoforms. Under the conditions tested PFK-M has the highest affinities for F6P and ATP (K0.5ATP 152 µM; K0.5F6P 147 µM), PFK-P the lowest affinities (K0.5ATP 276 µM; K0.5F6P 1333 µM), and PFK-L demonstrates a mixed picture of high ATP affinity and low F6P affinity (K0.5ATP 160 µM; K0.5F6P 1360 µM). PFK-M is more resistant to ATP inhibition compared with PFK-L and PFK-P (respectively, 23%, 31%, 50% decreases in specificity constants). GTP is an alternate phospho donor. Interface 2, which regulates the inactive dimer to active tetramer equilibrium, differs between isoforms, resulting in varying tetrameric stability. Under the conditions tested PFK-M is less sensitive to fructose 2,6-bisphosphate (F26BP) allosteric modulation than PFK-L or PFK-P (allosteric constants [K0.5ATP+F26BP/K0.5ATP] 1.10, 0.92, 0.54, respectively). Structural analysis of two allosteric sites reveals one may be specialised for AMP/ADP and the other for smaller/flexible regulators (citrate or phosphoenolpyruvate). Correlations between PFK-L and PFK-P transcript levels indicate that simultaneous expression may expand metabolic capacity for F16BP production whilst preserving regulatory capabilities. Analysis of cancer samples reveals intriguing parallels between PFK-P and PKM2 (pyruvate kinase M2), and simultaneous increases in PFK-P and PFKFB3 (responsible for F26BP production) transcript levels, suggesting prioritisation of metabolic flexibility in cancers. Our results describe the kinetic and transcript level differences between the three PFK isoforms, explaining how each isoform may be optimised for distinct roles.


Assuntos
Regulação Enzimológica da Expressão Gênica , Fosfofrutoquinases , Transcrição Gênica , Regulação Alostérica , Frutosefosfatos/química , Frutosefosfatos/genética , Frutosefosfatos/metabolismo , Humanos , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/genética , Especificidade de Órgãos , Fosfofrutoquinases/biossíntese , Fosfofrutoquinases/química , Fosfofrutoquinases/genética , Fosforilação
14.
Nat Metab ; 2(10): 1034-1045, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839596

RESUMO

Benign hepatosteatosis, affected by lipid uptake, de novo lipogenesis and fatty acid (FA) oxidation, progresses to non-alcoholic steatohepatitis (NASH) on stress and inflammation. A key macronutrient proposed to increase hepatosteatosis and NASH risk is fructose. Excessive intake of fructose causes intestinal-barrier deterioration and endotoxaemia. However, how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis remain unknown. Here we show, using mice, that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signalling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) peptide counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxaemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to FA in both mouse and human hepatocytes.


Assuntos
Frutose/farmacologia , Inflamação/metabolismo , Lipogênese/efeitos dos fármacos , Acetilcoenzima A/farmacologia , Animais , Endotoxemia/sangue , Feminino , Frutosefosfatos/farmacologia , Microbioma Gastrointestinal , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Intestinos/efeitos dos fármacos , Lipidômica , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regeneração/efeitos dos fármacos , Receptores Toll-Like/agonistas
15.
Enzyme Microb Technol ; 139: 109594, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32732042

RESUMO

Tagatose is a rare hexoketose with potential health benefits. Here, an enzyme, GatZ subunit ofd-tagatose-1,6-bisphosphate aldolase, was characterized. GatZ is involved in a multi-enzyme cascade reaction system that can produce tagatose from maltodextrin. It showed maximum activity at 70 °C and a pH 8.0, and required supplementation with 5 mM Mg2+ to achieve the highest catalytic activity. The Km and Vmax values of GatZ using fructose 6-phosphate as substrate were 5.66 mM and 0.0329 mmol/L min, respectively. An in vitro multi-enzyme system containing GatZ was constructed, and 1.75 g/L tagatose was produced from 5 g/L maltodextrin after 10 h. This biosystem could potentially enrich the application of C4 epimerases in rare sugar bioproduction.


Assuntos
Carboidratos Epimerases/metabolismo , Chloroflexi/enzimologia , Frutosefosfatos/metabolismo , Hexoses/biossíntese , Carboidratos Epimerases/genética , Chloroflexi/genética , Clonagem Molecular , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Cinética , Polissacarídeos/metabolismo , Especificidade por Substrato
16.
Biochemistry (Mosc) ; 85(3): 326-333, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32564737

RESUMO

Hexameric inorganic pyrophosphatase from Mycobacterium tuberculosis (Mt-PPase) has a number of structural and functional features that distinguish it from homologous enzymes widely occurring in living organisms. In particular, it has unusual zones of inter-subunit contacts and lacks the N-terminal region common for other PPases. In this work, we constructed two mutant forms of the enzyme, Ec-Mt-PPase and R14Q-Mt-PPase. In Ec-Mt-PPase, the missing part of the polypeptide chain was compensated with a fragment of PPase from Escherichia coli (Ec-PPase). In R14Q-Mt-PPase, a point mutation was introduced to the contact interface between the two trimers of the hexamer. Both modifications significantly improved the catalytic activity of the enzyme and abolished its inhibition by the cofactor (Mg2+ ion) excess. Activation of Mt-PPase by low (~10 µM) concentrations of ATP, fructose-1-phosphate, L-malate, and non-hydrolyzable substrate analogue methylene bisphosphonate (PCP) was observed. At concentrations of 100 µM and higher, the first three compounds acted as inhibitors. The activating effect of PCP was absent in both mutant forms, and the inhibitory effect of fructose-1-phosphate was absent in Ec-Mt-PPase. The effects of other modulators varied only quantitatively among the mutants. The obtained data indicate the presence of allosteric sites in Mt-PPase, which are located in the zones of inter-subunit contact or associated with them.


Assuntos
Difosfatos/química , Pirofosfatase Inorgânica/química , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Trifosfato de Adenosina/química , Sítio Alostérico , Catálise , Escherichia coli/enzimologia , Frutosefosfatos/química , Concentração de Íons de Hidrogênio , Hidrólise , Pirofosfatase Inorgânica/genética , Íons , Magnésio/química , Malatos/química , Mutagênese Sítio-Dirigida , Mutação , Peptídeos/química , Mutação Puntual , Conformação Proteica , Domínios Proteicos , Temperatura , Ultracentrifugação
17.
Biochim Biophys Acta Gen Subj ; 1864(7): 129601, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32179131

RESUMO

BACKGROUND: Escherichia coli cells contain a homolog of presumed 5-keto-4-deoxyuronate isomerase (KduI) from pectin-degrading soil bacteria, but the catalytic activity of the E. coli protein (o-KduI) was never demonstrated. METHODS: The known three-dimensional structure of E. coli o-KduI was compared with the available structures of sugar-converting enzymes. Based on the results of this analysis, sugar isomerization activity of recombinant o-KduI was tested against a panel of D-sugars and their derivatives. RESULTS: The three-dimensional structure of o-KduI exhibits a close similarity with Pyrococcus furiosus cupin-type phosphoglucose isomerase. In accordance with this similarity, o-KduI was found to catalyze interconversion of glucose-6-phosphate and fructose-6-phosphate and, less efficiently, conversion of glucuronate to fructuronate. o-KduI was hexameric in crystals but represented a mixture of inactive hexamers and active dimers in solution and contained a tightly bound Zn2+ ion. Dilution, substrate binding and Zn2+ removal shifted the hexamer ⇆ dimer equilibrium to the dimers. CONCLUSIONS: Our findings identify o-KduI as a novel phosphosugar isomerase in E. coli, whose activity may be regulated by changes in oligomeric structure. GENERAL SIGNIFICANCE: More than 5700 protein sequences are annotated as KduI, but their enzymatic activity has not been directly demonstrated. E. coli o-KduI is the first characterized member of this group, and its enzymatic activity was found to be different from the predicted activity.


Assuntos
Aldose-Cetose Isomerases/genética , Glucose-6-Fosfato Isomerase/genética , Conformação Proteica , Aldose-Cetose Isomerases/ultraestrutura , Sequência de Aminoácidos/genética , Metabolismo dos Carboidratos/genética , Catálise , Cristalografia por Raios X , Escherichia coli/enzimologia , Frutosefosfatos/genética , Glucose-6-Fosfato/genética , Glucose-6-Fosfato Isomerase/ultraestrutura , Pyrococcus furiosus/enzimologia
18.
EMBO J ; 39(8): e102166, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32134139

RESUMO

Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme with transamidating activity. We report here that both expression and activity of TG2 are enhanced in mammalian epithelial cells infected with the obligate intracellular bacteria Chlamydia trachomatis. Genetic or pharmacological inhibition of TG2 impairs bacterial development. We show that TG2 increases glucose import by up-regulating the transcription of the glucose transporter genes GLUT-1 and GLUT-3. Furthermore, TG2 activation drives one specific glucose-dependent pathway in the host, i.e., hexosamine biosynthesis. Mechanistically, we identify the glucosamine:fructose-6-phosphate amidotransferase (GFPT) among the substrates of TG2. GFPT modification by TG2 increases its enzymatic activity, resulting in higher levels of UDP-N-acetylglucosamine biosynthesis and protein O-GlcNAcylation. The correlation between TG2 transamidating activity and O-GlcNAcylation is disrupted in infected cells because host hexosamine biosynthesis is being exploited by the bacteria, in particular to assist their division. In conclusion, our work establishes TG2 as a key player in controlling glucose-derived metabolic pathways in mammalian cells, themselves hijacked by C. trachomatis to sustain their own metabolic needs.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucosamina/metabolismo , Glucose/metabolismo , Hexosaminas/biossíntese , Transglutaminases/metabolismo , Animais , Transporte Biológico , Infecções por Chlamydia/microbiologia , Células Epiteliais/metabolismo , Fibroblastos , Frutosefosfatos/metabolismo , Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/genética
19.
Biochimie ; 171-172: 23-30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32014504

RESUMO

Bacterial ADP-glucose pyrophosphorylases are allosterically regulated by metabolites that are key intermediates of central pathways in the respective microorganism. Pyruvate (Pyr) and fructose 6-phosphate (Fru6P) activate the enzyme from Agrobacterium tumefaciens by increasing Vmax about 10- and 20-fold, respectively. Here, we studied the combined effect of both metabolites on the enzyme activation. Our results support a model in which there is a synergistic binding of these two activators to two distinct sites and that each activator leads the enzyme to distinct active forms with different properties. In presence of both activators, Pyr had a catalytically dominant effect over Fru6P determining the active conformational state. By mutagenesis we obtained enzyme variants still sensitive to Pyr activation, but in which the allosteric signal by Fru6P was disrupted. This indicated that the activation mechanism for each effector was not the same. The ability for this enzyme to have more than one allosteric activator site, active forms, and allosteric signaling mechanisms is critical to expand the evolvability of its regulation. These synergistic interactions between allosteric activators may represent a feature in other allosteric enzymes.


Assuntos
Agrobacterium tumefaciens/enzimologia , Proteínas de Bactérias/metabolismo , Frutosefosfatos/metabolismo , Glucose-1-Fosfato Adenililtransferase/metabolismo , Ácido Pirúvico/metabolismo , Regulação Alostérica , Sítio Alostérico , Ativação Enzimática , Cinética , Modelos Moleculares
20.
Nucleic Acids Res ; 48(6): 3277-3285, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31965182

RESUMO

The partition of aminoacyl-tRNA synthetases (aaRSs) into two classes of equal size and the correlated amino acid distribution is a puzzling still unexplained observation. We propose that the time scale of the amino-acid synthesis, assumed to be proportional to the number of reaction steps (NE) involved in the biosynthesis pathway, is one of the parameters that controlled the timescale of aaRSs appearance. Because all pathways are branched at fructose-6-phosphate on the metabolic pathway, this product is defined as the common origin for the NE comparison. For each amino-acid, the NE value, counted from the origin to the final product, provides a timescale for the pathways to be established. An archeological approach based on NE reveals that aaRSs of the two classes are generated in pair along this timescale. The results support the coevolution theory for the origin of the genetic code with an earlier appearance of class II aaRSs.


Assuntos
Aminoácidos/biossíntese , Aminoacil-tRNA Sintetases/genética , Vias Biossintéticas/genética , Evolução Molecular , Aminoácidos/genética , Frutosefosfatos/genética , Frutosefosfatos/metabolismo , Código Genético/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...